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In this paper we report and analyze complex spatiotemporal dynamics recorded in electroconvection in the
nematic liquid crystal I52, driven by an ac voltage slightly above the onset value. The instability mechanism
creating the pattern is an oscillatory �Hopf� instability, giving rise to two pairs of counterpropagating rolls
traveling in oblique directions relative to the unperturbed director axis. If a system of nonlinear partial differ-
ential equations shows the same set of unstable modes, the pattern above the onset is represented in a weakly
nonlinear analysis as a superposition of the traveling rolls in terms of wave envelopes varying slowly in space
and time. Motivated by this procedure, we extract slowly varying envelopes from the space-time data of the
pattern, using a four-wave demodulation based on Fourier analysis. In order to characterize the spatiotemporal
dynamics, we apply a variety of diagnostic methods to the envelopes, including the calculation of mean
intensities and correlation lengths, global and local Karhunen-Loève decompositions in Fourier space and
physical space, the location of holes, the identification of coherent vertical structures, and estimates of
Lyapunov exponents. The results of this analysis provide strong evidence that our pattern exhibits extensive
spatiotemporal chaos. One of its main characteristics is the presence of coherent structures of low and high
intensities extended in the vertical �parallel to the director� direction.
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I. INTRODUCTION

Spatially extended systems driven far from equilibrium
may exhibit complex spatiotemporal patterns, characterized
by a fast decay of spatial and temporal correlations �1�. Such
states are referred to as spatiotemporal chaos �STC�. Owing
to the coupling of many spatial degrees of freedom, STC
often shows structures richer than the purely temporally cha-
otic states observed in low-dimensional systems. In particu-
lar, extensive STC is a state in which several dynamical in-
variants used for the characterization of low-dimensional
chaos, such as the fractal dimension and the number of posi-
tive Lyapunov exponents, scale with the system’s volume
and become extensive variables. The problem of finding a
general framework for the characterization of such disor-
dered states, as well as the identification of instability
mechanisms generating them, is still an open question in
nonlinear dynamics. While spatiotemporally chaotic phe-
nomena have received a great deal of attention in the last
decade, much of this work is theoretical and numerical, call-
ing for a more systematic analysis of experiments. In this
paper we report and study a complex spatiotemporal pattern
recorded in an electroconvection experiment with the nem-
atic liquid crystal I52, which exhibits the characteristics of
extensive STC.

Many theoretical investigations of STC focused on the
one-dimensional �1D� and two-dimensional �2D� complex
Ginzburg-Landau equations, which are known to exhibit
phase turbulence and defect chaos; see �2� for a review. The
importance of this, and more generally systems of coupled
Ginzburg-Landau equations, relies on the fact that these
equations occur in a weakly nonlinear analysis of nonlinear
systems of partial differential equations �PDEs� slightly
above the primary instability of a basic, homogeneous state.
Their solutions describe the dynamics of slowly varying en-

velopes of plane-wave trains associated with the critical
wave numbers. Thus, in order to relate an experimentally
observed spatiotemporally chaotic pattern to the solutions of
a system of Ginzburg-Landau equations, the STC has to arise
directly above the onset. This excludes, for example, the spi-
ral defect chaos observed in Rayleigh-Bénard convection
�3,4�, a prototype of STC, because it emerges from an al-
ready complicated state. A further complication is that the
equations for Rayleigh-Bénard convection in 2D extended
fluid layers are isotropic, which leads to a full circle of criti-
cal wave numbers that makes the description through a finite
set of plane-wave envelopes problematic. In contrast, in an-
isotropic systems there is only a finite, usually small number
of critical wave numbers, which allows a unique reduced
description through a finite set of plane-wave envelopes
above the onset, whose dynamics is governed by Ginzburg-
Landau-type amplitude equations.

A paradigm for anisotropic pattern formation is the elec-
troconvection in nematic liquid crystals �5–7�. Due to the
short characteristic time scales and large aspect ratios, nem-
atic electroconvection is a well-suited experimental system
in which to study ordered and complex spatiotemporal pat-
terns, by varying the electrical conductivity and the ampli-
tude and frequency of the electric potential difference across
a planar layer of the liquid crystal. The anisotropy results
from an inherent order of the molecules relative to each
other. The direction parallel to the local average molecular
alignment is referred to as director. The plates are treated so
that there is a uniform alignment of the director parallel to
the plates, i.e., planar alignment, which induces an axial an-
isotropy.

Nematic electroconvection has been intensively studied
experimentally. Depending upon the control parameters and
the material used, a great variety of patterns, including sta-
tionary and traveling rolls, localized patterns, spatiotemporal
chaos, and rectangular patterns �8–14� have been observed at
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or near onset. Most of the phenomena observed near thresh-
old �e.g., normal, oblique, and dielectric rolls and the struc-
ture and dynamics of defects� can be understood from the
“standard” hydrodynamic description, which combines the
continuum theory of Ericksen and Leslie with the quasistatic
Maxwell equations. Notable exceptions are the experimen-
tally observed oscillatory instabilities �11,15� leading to trav-
eling rolls. The recently introduced and analyzed weak elec-
trolyte model �13,16� explains these effects as a consequence
of a slow dissociation and recombination of the charge-
carrying ions, resulting in a dynamically varying electric
conductivity. If the relaxation of the conductivity is suffi-
ciently slow, the competition between stabilizing and desta-
bilizing effects leads to an oscillatory convective instability
with a nonzero Hopf frequency �13,17–19�, giving rise to
convection rolls traveling in the director direction, or in ob-
lique directions relative to the director. We refer to the latter
case as “oblique Hopf instability.”

In a series of papers, Dennin et al. �10,11,15� reported a
variety of ordered and complex patterns observed in electro-
convection in the nematic liquid crystal I52. The complex
patterns include localized worm structures, as well as two
types of patterns identified as STC. One of these two states
occurs directly at the onset, when the convective instability
is an oblique Hopf instability. The state arises as a superpo-
sition of two pairs of counterpropagating traveling rolls cre-
ated in the instability. One of its main characteristics is that it
is extended over the entire convection cell, but as yet there is
no complete investigation confirming that it is extensive
STC.

In this paper we report and analyze a complex electrocon-
vection pattern that is characterized by the appearance of
vertical active �high-intensity� regions in the cell, separated
by inactive �low-intensity� regions. Like the fully extended
STC state reported in �11,15�, it is observed slightly above
the onset and arises as a superposition of four oblique trav-
eling rolls created in the oblique Hopf instability. Our main
objective is to extract slowly varying envelopes of these
waves through a spatiotemporal demodulation analysis, and
to study their dynamics using a variety of numerical diagnos-
tic tools. This approach to analyzing the pattern is guided by
the procedure of a weakly nonlinear analysis of a governing
system of partial differential equations, such as the weak
electrolyte model �18–20�. Although in this paper we do not
actually pursue a weakly nonlinear analysis of the weak elec-
trolyte model, which determines the parameters in the
Ginzburg-Landau equations for the envelopes, our study
bridges the gap between experimentally observed STC and
the dynamics of envelopes. Work toward identifying the pa-
rameters in the weak electrolyte model for this and other
experiments, and calculating the resulting Ginzburg-Landau
parameters is in progress.

The paper is organized as follows. In Sec. II we briefly
describe the oblique Hopf instability and the representation
of patterns through slowly varying envelopes. In Sec. III we
discuss the experimental setup, and in Sec. IV the demodu-
lation analysis for extracting the envelopes. Section V is de-
voted to the analysis of the spatiotemporal dynamics of the
envelopes using a variety of diagnostic tools. These include
the calculation of mean intensities, global and local

Karhunen-Loève decompositions �KLDs�, the location of
holes, the identification of coherent vertical structures, esti-
mates of Lyapunov exponents, a space-time cluster analysis,
and the identification of ideal wave patterns characteristic of
the oblique Hopf instability. The results of this study suggest
that the recorded pattern is a case of extensive STC that
exhibits spatiotemporal intermittency. Section VI concludes
with discussions and an outlook on future work.

II. OBLIQUE HOPF INSTABILITY

In this section we briefly describe the oblique Hopf insta-
bility in 2D extended layers, and the representation of solu-
tions through slowly varying envelopes as prescribed in a
weakly nonlinear analysis.

If an axially anisotropic system of PDEs undergoes the
oblique Hopf instability, there are four critical wave numbers
��pc , �qc� located off both reflection axes. A scalar field u
on, say, the top of the layer is represented in the form

u�x,y,t� � �A1W1 + A2W2 + A3W3 + A4W4 + c.c.� + hot,

�1�

where the Aj =Aj�x ,y , t�, with j=1, . . . ,4, are slowly varying
complex envelopes modulating four oblique traveling waves,

W1 = ei�pcx+qcy+�ct�, W2 = ei�−pcx+qcy+�ct�,

W3 = ei�−pcx−qcy+�ct�, W4 = ei�pcx−qcy+�ct�, �2�

�c is the critical frequency, and the waves Wj in Eq. �2� arise
in the solutions of the linearized system at onset. For the
weak electrolyte model, x is the coordinate along the director
direction, and y is the coordinate in the perpendicular direc-
tion. In Eq. �1�, c.c. refers to the complex-conjugate expres-
sion, and hot to higher harmonics. Formally, in an expansion
in terms of a small parameter � measuring the distance of the
control parameter �voltage in the case of the weak electrolyte
model� from the onset value, the Aj are of order O����. At
O��� the hot comprise terms of the form AiAjWiWj,

AiĀjWiW̄j �the bars denote complex conjugation� and their
complex conjugates, and similarly at higher orders. Thus the
envelopes of the higher harmonics are “slaved” by the basic
envelopes Aj. The Aj in turn satisfy a system of coupled
Ginzburg-Landau equations �21,22�, and so are the main
driver of the dynamics.

The waves W2 and W4 are stripes propagating in the di-
rections ��−pc ,qc� and are referred to as “zig waves,”
whereas W1 and W3 propagate in the directions ��pc ,qc� and
are referred to as “zag waves.” Accordingly, A2 ,A4 and
A1 ,A3 are referred to as zig and zag envelopes, respectively.
The zig and zag waves are pairs of counterpropagating trav-
eling waves moving “left” �W1 ,W4� and “right” �W2 ,W3�, as
illustrated in Fig. 1.

The envelopes A1 , . . . ,A4 satisfy a system of coupled
Ginzburg-Landau equations derived in a weakly nonlinear
analysis. The form of these equations follows from symme-
try considerations and the type of the instability �21,22�.
They show a rich variety of solutions, which is only partly
explored �19,20,22�. There are six distinguished spatially ho-
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mogeneous solutions corresponding to traveling waves,
standing waves, two types of traveling rectangles �TRs�,
standing rectangles �SRs�, and alternating waves �AWs�
�23,24�. The main characteristics of the STC pattern reported
in �9,11,15� are extended patches of alternating waves. In our
pattern ideal waves are observed only in small patches and
over short time ranges, and the dominant waves are zag
waves and traveling rectangles.

In this paper, instead of simulating the Ginzburg-Landau
equations for the Aj, we extract the envelopes from the ex-
perimentally recorded pattern using Fourier analysis.

III. EXPERIMENTAL SETUP

In the past 40 years, electroconvection experiments have
employed a variety of different nematic liquid-crystal com-
pounds and mixtures, including Phase V, a mixture of azoxy
compounds �8,13,25–27�; Mischung V, a mixture of phenyl
benzoates �28–32�; and methoxybenzylidene butylaniline
�MBBA�, a single component �33–35�. MBBA is one of the
earliest thermotropic nematic liquid crystals, and has the ad-
vantage that practically all of its physical properties have
been measured. Even though it has suitable values of dielec-
tric anisotropy ��a� and conductivity anisotropy ��a� in order
for electroconvection to occur, its chemical stability is prob-
lematic. Also, �a is roughly −0.5 �depending on temperature�,
which is low if one desires oblique �“zig-zag”� modes �9,36�
with a relatively large angle between the director and the
wave vector. We have therefore utilized a single component
nematic liquid crystal, 4-ethyl-2-fluoro-4�-�2-�trans-4-
pentylcyclohexyl�-ethyl�biphenyl �9,37�, usually referred to
by its trade name, I52. It has a wide nematic range from 24
to 103.4 °C, is chemically stable, and has �a low enough so
as to exhibit distinct oblique traveling rolls, with greater ob-
lique angles at low frequencies when adequately doped
�9,11�. Also, I52 reliably exhibits a supercritical Hopf bifur-
cation at onset �14�, giving rise to left- and right-traveling zig
and zag rolls �oblique Hopf instability�, whose dynamics
slightly above onset is governed by four coupled Ginzburg-
Landau equations �21,22�.

We used the traditional electroconvection arrangement, in
which a ready-made cell fabricated by E.H.C. Co., Tokyo,
Japan �EHC-cell� with flat, transparent conducting electrodes
is rubbed to get planar alignment along a single direction. In
the parallel-plate-capacitor geometry, the electrodes were
separated by a distance of 10.39�0.08 �m �measured inter-

ferometrically�, and the lateral dimensional “active area” was
10�10 mm2. Outside the active area, there is no conductive
coating and hence no electric field is present. The electrical
contact between the plates and the hookup wires were made
by using silver-laden epoxy.

One challenge with I52 is preparing the material so that it
has the electrical conductivity required for the desired elec-
troconvection state. The most reliable dopant for increasing
I52’s conductivity is reported to be molecular iodine, I2.
However, achieving the desired conductivity requires more
than simply adding iodine to the nematic liquid crystal, be-
cause the dopant is not highly soluble. Our approach was to
hasten the dissolution by holding the mixture at elevated
temperature �150 °C for 72 h�. Although temperature this
high can subtly affect the liquid crystal’s material properties,
particularly the dielectric anisotropy, we confirmed that this
change was not only small, but also reproducible. Thus, ma-
terial prepared in this way was found to give reliable and
repeatable results for not only the electrical conductivity, but
also the electroconvection behavior.

For the experiment reported here, the nominal concentra-
tion of iodine was fairly high: 11 wt %. On face of it, this is
a large quantity of dopant, but we have observed, as have
other researchers �12,38�, that what is critical is not the
nominal concentration, but its effect on the electrical conduc-
tivity and the resulting electroconvective threshold curve;
these results are presented subsequently. One further issue
well known with I52 is the control of electrical conductivity
during experiments �9�, since this changes over time elapsed.
To maintain a constant value of the conductivity throughout
the experiment, one typically adjusts the temperature within
the range where �a�0. In our case, �a became positive at
62.95 °C.

In order to obtain both �� and �� at different frequencies,
we measured the current passing through the liquid-crystal
cell at a constant voltage. The result is the sum of conduction
current and the displacement current �39�. Thus, for no con-
vection, the current J can be expressed as

J = �2V�G� cos �ot − �oC� sin �ot� , �3�

where V is the signal voltage, and G� and C� are the per-
pendicular components of the conductance and capacitance,
respectively. We can calculate �� from the in-phase part of
Eq. �3� and �� from the out-of-phase part. For this experi-
ment, the sequence of images recorded had ��=2.88 and
��=11.37�10−9 	−1 m−1 at 51 Hz, and the thickness of the
cell was 10.39 �m.

The electroconvection apparatus consists of a
temperature-controlled stage, which besides controlling the
temperature can precisely control heating as well as cooling,
electronics for applying the ac voltage, and the shadowgraph
apparatus �40� for visualization. The cell was illuminated by
polarized light with the polarization along the director, and
the resulting shadowgraph images were monitored by the
charge-coupled device �CCD� camera mounted on the micro-
scope at 30 cm from the sample, using a 10� objective.
Besides other advantages, the small thickness of the cell and
the lower magnification of the microscope enabled us to cap-
ture more rolls in the individual frames.

right left

left right

Zig Zag

FIG. 1. Illustration of zig and zag waves moving left or right.
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We fixed the temperature to 30 °C and the external driv-
ing frequency to 51 Hz in the conduction regime �the cutoff
frequency at this temperature was 340 Hz�, and slowly in-
creased the ac voltage V to the onset voltage Vc. After Vc was
reached, we slightly increased the voltage further
��= �V /Vc�2−1�0.042�, waited for a few minutes, and then
captured the 8-bit grayscale image and calculated its power
spectrum in real time. This allowed finer focusing of the
shadowgraph in order to enhance the dominant inner oblique
modes �first harmonics� of the power spectrum right above
onset. With improper focusing, the higher harmonics domi-
nate over the first harmonics. The sample stage, kept on the
fully rotatable stage of the microscope, was rotated as nec-
essary to make sure that the peaks of the power spectrum
were symmetric about the director axis. Then the stage was
fixed for the whole experiment, and we captured a sequence
of images using a frame grabber at the rate of 28.53 frames/s.

The raw data recorded in this experiment consist of a
sequence of T=30 000 digital images of size M �N, with
�using matrix notation� M =480 pixels in the vertical �the
director� direction and N=640 pixels in the horizontal direc-
tion. In order to remove inhomogeneities in the optical sys-
tem, the raw images have been preprocessed pixelwise ac-
cording to the equation

I =
�Ff − Fd	p

Ff − Fd
�Ir − Fd� ,

where I is the preprocessed �flatfielded� image; Ir is the raw
image; Fd is the dark frame �no light input�; Ff is the flat
field, which is a map of the CCD’s sensitivity to light at zero
ac field and same illumination and temperature as the raw
image; and �Ff −Fd	p denotes the average of Ff −Fd over all
pixels.

IV. FOUR-WAVE DEMODULATION

Since the applied voltage is slightly above the critical
value for the onset of electroconvection, created in an ob-
lique Hopf instability, our objective is to extract envelopes
varying slowly in space and time as prescribed in a weakly
nonlinear analysis of a system of PDEs. This analysis also
yields the values of the critical wave numbers and the critical
�Hopf� frequency. The dynamics of the envelopes is studied
in Sec. V.

We first perform a spatial demodulation that generates
amplitudes of zig and zag waves varying slowly in space, but
not yet in time, following the procedure used in �9,11,15�. In
the second step we perform a temporal demodulation, in
which we extract the envelopes of the four oblique traveling
waves from the time series of the zig and zag amplitudes.
This separation into spatial and temporal demodulation by-
passes full three-dimensional �3D� Fourier transforms, which
significantly reduces the computational effort.

A. Spatial demodulation and critical wave numbers

We denote the sequence of flatfielded images by I�k , l , t�,
where k and l are the vertical and horizontal pixel labels,
0
k�M and 0
 l�N, and t is time, 0
 t�T. A typical

snapshot, recorded at t=20 009, is shown in Fig. 2�a�. The
discrete Fourier transform of an image is denoted by
F�m ,n , t�=Fs�I��m ,n , t�, defined by

Fs�I� 

1

�MN
�
k=0

M−1

�
l=0

N−1

e−2�i�mk/M+nl/N�I�k,l,t� , �4�

and its �spatial� power spectrum by P�m ,n , t�= �F�m ,n , t��2,
where Fs refers to the spatial Fourier operator. We identify
wave numbers with the integer labels �m ,n�, and note that F
and P are doubly periodic in �m ,n� with periods �M ,N�.
Given F, the image can be reconstructed via the inverse Fou-
rier transform, I�k , l , t�=Fs

−1�F��k , l , t�, defined by

Fs
−1�F� 


1
�MN

�
m=0

M−1

�
n=0

N−1

e2�i�mk/M+nl/N�F�m,n,t� . �5�

For displaying Fourier transforms and power spectra, we
choose the range −M /2
m�M /2 and −N /2
n�N /2 as
fundamental wave-number domain. Note that, since I is real,

F�−m ,−n , t�= F̄�m ,n , t�.
In Fig. 2�b� the power spectrum P of the image at

t=20 009 is displayed in the window −55
m
55,
−65
n
65. Outside of this window P is negligibly small.
We can clearly recognize small regions with high contribu-
tions from the dominant zig and zag modes �inner, first har-
monics�. The relatively strong contributions centered around
the second harmonics of these modes do not arise from the
fluid flow, but rather are an optical-focusing effect caused by
the nonlinearities of the shadowgraph method; see �11,40�
for a detailed explanation. Lastly, visible in Fig. 2�b� is the
remnant after flatfielding, described in Sec. III. This opera-
tion reduced the longest-wavelength Fourier components by
90% over the raw image; the contributions near the center
�0,0� are what remained.

In Fig. 2�c� we show zooms into the zig and zag regions
of Fig. 2�b� in the windows Wzig and Wzag, defined by
M1
 �m�
M2, N1
n
N2, with m�0 for Wzig and m�0
for Wzag. The cutoffs are chosen as M1=13, M2=29, N1=6,
and N2=39; that is, the size of the windows is Mw�Nw with
Mw=17 and Nw=34. We identify the modes in these win-
dows �and their reflections about the origin� with the domi-
nant oblique zig and zag modes, and denote the power spec-
tra restricted to these windows by Pzig and Pzag.

The same zooms as in Figs. 2�b� and 2�c� are shown in
Figs. 2�d� and 2�e� for the time-averaged power spectrum

�P	�m,n� =
1

T
�
t=0

T−1

P�m,n,t� .

As for the snapshots, the restrictions of �P	 to the windows
Wzig and Wzag are identified with the averaged zig and zag
power spectra and denoted �Pzig	 and �Pzag	. Their maxima
are at �m ,n�= �−20,22� and �22,22�. Note that the �Pzag	 dis-
tribution is about three times as large as the �Pzig	 distribu-
tion. Thus the pattern is on average dominated by the zag
waves.

DANGELMAYR et al. PHYSICAL REVIEW E 79, 046215 �2009�

046215-4



To each image we associate zig and zag components by
filtering out the modes in the corresponding windows. This is
done by setting Fzig=MzigF and Fzag=MzagF, where Mzig
and Mzag are filter masks which are zero outside of Wzig and
Wzag and one inside these windows, except in a boundary
layer of thickness of 4 pixels in which they decay to zero in
order to avoid sharp discontinuities. The zig and zag compo-
nents are then defined by

Izig = Fs
−1�Fzig + F̂zig�, Izag = Fs

−1�Fzag + F̂zag� ,

where F̂zig�m ,n , t�= F̄zig�−m ,−n , t�, and analogously F̂zag. In
Figs. 3�a�–3�c� we show the components Izig and Izag, and
their superposition Izig+ Izag at t=20 009, respectively. In
these and other grayscale �or online color-coded� plots, white
is mapped to high values and black to low values.

To complete the spatial demodulation, we have to deter-
mine integer values �mc ,nc� for the critical wave numbers.
For this we use the time-averaged power spectra. We define,
in the window Wzag, the zig-zag average Pav�m ,n� by

Pav�m,n� = �Pzig	�− m,n� + �Pzag	�m,n� , �6�

and interpret Pav as a �non-normalized� distribution for
�m ,n�; see Fig. 2�f�. The critical wave numbers are then
defined as the averages with respect to this distribution,

�mc,nc� =
1

NP
�

m=M1

M2

�
n=N1

N2

�m,n�Pav�m,n� = �21,22� , �7�

where

−50

0

50

−50

0
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m
n
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zag
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1

0

2
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FIG. 2. �a� Flatfielded image at t=20 009 and �b� its power spectrum in the window −55
m
55, −65
n
65. �c� Zooms of �b� into
the oblique regions Wzig and Wzag. ��d� and �e�� Time-averaged �over the full range 0
 t�T� power spectra in the same windows as in �b�
and �c�. �f� Time- and zig-zag-averaged power spectrum Pav. This distribution is used to compute the critical wave numbers �mc ,nc�
according to Eq. �7�.
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NP = �
m=M1

M2

�
n=N1

N2

Pav�m,n� .

The associated vertical and horizontal wavelengths are
�
v ,
h�= �M /mc ,N /nc��dp, where dp=0.746 �m is the
pixel diameter, yielding 
v=17.06 �m and 
h=21.71 �m.

Using the critical wave numbers, we can extract demodu-
lated zig and zag envelopes Azig�k , l , t� and Azag�k , l , t� vary-
ing slowly in space �but not in time�, by setting

Azig = Fs
−1�Fzig��k,l,t�e2�i�kmc/M−lnc/N� + c.c., �8�

Azag = Fs
−1�Fzag��k,l,t�e−2�i�kmc/M+lnc/N� + c.c. �9�

In Figs. 3�d� and 3�e�, Azig and Azag are displayed for
t=20 009. The dark and white �online yellow� regions in
these plots are regions with high zig and high zag contribu-
tions to the recorded image.

B. Temporal demodulation and Hopf frequency

Due to the presence of a Hopf instability, the time series
of the dominant oblique modes exhibit fast oscillations. The
frequency range of these oscillations and the Hopf frequency
are determined from the temporal power spectra of the ob-
lique modes.

Given any time series f�t�, with 0
 t�T, we denote by

g�w� = Ft�f��w� 

1
�T

�
t=0

T−1

f�t�e−2�iwt/T �10�

its Fourier transform and by s�w�= �g�w��2 its power spec-
trum, where Ft refers to the temporal Fourier operator. In
this discrete setting, temporal frequencies are identified with
integers w in the range −T /2
w�T /2.

The critical Hopf frequency is determined in a similar
manner as the critical wave numbers. Here we use the aver-
ages of the temporal power spectra,

�Szig/zag	�w� =
1

MwNw
� �Gzig/zag�m,n,w��2,

where Gzig/zag�m ,n ,w�=Ft�Fzig/zag��m ,n ,w� and the sum ex-
tends over labels �m ,n��Wzig/zag. These averages are dis-
played in Fig. 4�a� in the range of �w�
2500. Outside of this
range �Szig	 and �Szag	 are very small, as are the spectra of the
individual oblique modes’ time series. As apparent from Fig.
4�a�, the fast oscillations arise from contributions to the
power spectra from left and right windows centered
around w� �1500. We choose these windows as W�:
700
 �w�
2400, with w�0 for W+ and w�0 for W−. In
contrast to the spatial power spectra, the temporal power
spectra do not exhibit strong contributions from the higher
harmonics. Apart from the central peak at w=0, which re-
sults from a nonzero time average of the flatfielded images,
the power spectra are dominated by contributions from the
windows W+ and W−. Thus we use the zig-zag and left-right
average

Sav�w� = �Szig	�w� + �Szag	�w� + �Szig	�− w� + �Szag	�− w�

�see Fig. 4�b�� as distribution to compute the �integer� Hopf
frequency wc in W+ as

wc = �
w�W+

wSav�w�
 �
w�W+

Sav�w� = 1434.

With the camera’s sampling rate of 28.53 frames/s, wc cor-
responds to a frequency of 1.364 Hz.

We note that the distribution sav�w�, which is derived from
the power spectra of the critical modes F��mc ,nc , t� in the
same manner as Sav�w� is derived from the averaged power
spectra, gives an average of 1435. Thus the power spectra of
the critical modes yield approximately the same critical fre-
quency like the averaged power spectra.

Using wc, we extract slow time series from the oblique
modes by setting

Fzig/zag
� �m,n,t� = Ft

−1�Gzig/zag
� ��m,n,t�e−2�iwct/T, �11�

where

Gzig/zag
+ �m,n,w� = M�w�Gzig/zag�m,n,w� ,

Gzig/zag
− �m,n,w� = M�w�Ḡzig/zag�m,n,w� ,

and M�w� is a frequency filter mask which is 0 outside of
W+, 1 in the interior of W+, and decays to 0 in transition
regions of length 100 at the left and right boundaries of W+.

(b)(a)

(c)

(d) (e)

FIG. 3. �Color online� �a� Izig, �b� Izag, �c� Izig+ Izag, �d� Azig, and
�e� Azag for the pattern snapshot at t=20 009. Same grayscale �color
online� maps for �a� and �b�, and �d� and �e�.
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In Fig. 4�c� we show the moduli of the slow time series of
the critical modes,

fzig
� �t� = Fzig

� �mc,nc,t�, fzag
� �t� = Fzag

� �− mc,nc,t� , �12�

over the full range 0
 t�T. The fast oscillations seen in
fzig�t� and fzag�t� have disappeared, and there is no discern-
ible structure in phase plane as well as 3D plots of the slow
modes. Zooms of the real parts of the slow critical zag
modes in the window 20 000
 t
23 000, together with the
real parts of the modulated time series,

fzag
mod�t� = fzag

+ �t�e2�iwct/T + f̄zag
− �t�e−2�iwct/T,

are shown in Fig. 4�d�.
We finally define envelopes varying slowly in time and

space through spatial Fourier inversion as

A1�k,l,t� = Fs
−1�Fzag

+ ��k,l,t�e2�i�−mck/M−ncl/N�,

A2�k,l,t� = Fs
−1�Fzig

+ ��k,l,t�e2�i�mck/M−ncl/N�,

A3�k,l,t� = Fs
−1�F̃zag

− ��k,l,t�e2�i�mck/M+ncl/N�,

A4�k,l,t� = Fs
−1�F̃zig

− ��k,l,t�e2�i�−mck/M+ncl/N�, �13�

where F̃zig/zag
− �m ,n , t�=Fzig/zag

− �−m ,−n , t�. The four-wave su-
perposition

Io�k,l,t� = �A1�k,l,t�e2�i�mck/M+ncl/N�

+ A2�k,l,t�e2�i�−mck/M+ncl/N�

+ A3�k,l,t�e2�i�−mck/M−ncl/N�

+ A4�k,l,t�e2�i�mck/M−ncl/N��e2�iwct/T + c.c.,

�14�

which is the discrete analog of Eqs. �1� and �2� without
higher-order terms, is considered as our basic oblique pattern
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FIG. 4. �a� Averages �Szig/zag	�w� over the temporal power spectra of all zig/zag modes. �b� Zig-zag and left-right average Sav�w� of the
averaged power spectra in �a�. This distribution is used to compute wc. �c� Moduli of the slow critical modes’ time series fzig/zag

� �t�, and �d�
zooms of the real parts of fzag

� �t� and of the modulated time series fzag
mod�t� in the range 20 000
 t
23 000.

FIG. 5. �Color online� 3D plots of �a� �A1�, �b� �A2�, �c� �A3�, and
�d� �A4� for t=20 009; see Fig. 3�c� for the corresponding snapshot
of Io. The maxima are 0.34, 0.48, 0.53, and 0.31 for �A1�, �A2�, �A3�,
and �A4�, respectively. Same tick labels and axis labels in all four
plots.
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created in the Hopf instability. In Fig. 5 snapshots of the �Aj�
at t=20 009 are shown; see Fig. 3�c� for the corresponding
oblique pattern snapshot.

As mentioned in Sec. IV A, the pattern I, displayed in Fig.
2�a� for t=20 009, is not the “true pattern” generated by the
fluid flow since it contains relatively large contributions from
the second harmonics caused by nonlinearities of the shad-
owgraph method �11,40�, as well as remnants after flatfield-
ing near the center �0,0�. For validating representation �14�,
we have doubled the size of the window used for filtering out
the oblique modes in each direction, and computed the re-

sulting oblique pattern Ĩ for a sample of t values. For all of

these values the relative norm difference �Ĩ− Io� / �Ĩ� was be-
low 1%.

V. DIAGNOSIS OF THE ENVELOPE DYNAMICS

In this section we apply several diagnostic tools to the
envelopes in order to characterize the dynamics quantita-
tively and qualitatively, and show that the pattern we study
exhibits the characteristics of extensive spatiotemporal
chaos. The methods applied comprise the calculation of
mean intensities and spatial and temporal correlations,
Karhunen-Loève decompositions in Fourier space and physi-
cal space, the location of holes of the envelopes in time and
space, the identification of coherent vertical structures, and
estimates of Lyapunov exponents using embedding tech-
niques, and the analysis of basic wave patterns.

As can be seen in a movie �see Fig. 3�c� for a snapshot�,
the main characteristics of our pattern are patches of high
intensity, separated by regions of low intensity. The form of
the pattern within a patch changes, and the patches them-
selves split and merge permanently. The dominant envelopes
contributing to the dynamics are A3 and A2, whereas A1 and
A4 play the role of a kind of “background noise” �much
lower intensity�. Traveling stripes and rectangles are ob-
served occasionally in small regions, mostly composed of
right zig and zag waves corresponding to large values of �A3�
and/or �A2�. For example, in Fig. 3�c� we see a few almost
perfect zag stripes, but the majority of the stripes are modu-
lated. We can also see a few small patches with rectangular
structure. Due to the dominance of A2 and A3, the rectangles
are mainly traveling to the right. Overall the pattern appears
spatiotemporally chaotic.

Another characteristic feature of our pattern is that the
high-intensity patches appear confined to approximately ver-
tical regions, as apparent in Fig. 3�c�. These regions can also
be recognized in the plots of �A3� and �A2� in Fig. 5. The
calculations in Sec. V A show that on average the contribu-
tion from A3 is higher than the contribution from A2. Thus
the dominant envelope is the zag-right envelope A3.

A. Mean intensities and spatial autocorrelations

In Fig. 6�a� we show the temporal averages ��Aj�2	 of the
intensities of the envelopes. As apparent from this figure, the
zag-right envelope A3 has the highest mean intensity fol-
lowed by the zig-right envelope A2, whereas the left zig and
zag envelopes A4 and A1 have consistently small mean inten-

sities except at isolated spots. For all four envelopes we can
recognize alternating approximately vertical active and inac-
tive regions of high and low intensities, and the regions with
highest intensities are located in left part of the cell.

By using Eq. �14�, the mean intensity of the oblique pat-
tern Io can be decomposed as �Io

2	= �Io
2	slow+ �Io

2	fast, with the
slow and fast components given by

2�Io
2	slow = �

j=1

4

��Aj�2	 , �15�

2�Io
2	fast = ��A1Ā2	 + �Ā3A4	�e4�imck/M + ��A1Ā4	

+ �A2Ā3	�e4�incl/N + �A1Ā3	e4�i�mck/M+ncl/N�

+ �Ā2A4	e4�i�mck/M−ncl/N� + c.c. �16�

The full mean intensity �Io
2	 is displayed in Fig. 6�b�. This

intensity pattern is dominated by �Io
2	slow, which shows again

vertical regions of high and low intensities. There are two
patches with highest intensity located in the left part of the
cell. In the plot of �Io

2	fast �not shown�, we see mainly vertical
stripes due to the fourth term in Eq. �16�, some of which are
modulated due to the first two terms in Eq. �16�, as well as
some short oblique stripes due to the last two terms in Eq.
�16�.

In order to quantify the spatial correlations, we have com-
puted the spatial autocorrelation functions of the envelopes,
defined by

(b)

(a)

(c)

FIG. 6. �Color online� �a� Average intensities ��A1�2	 �upper left
panel�, ��A2�2	 �upper right panel�, ��A3�2	 �lower left panel�, and
��A4�2	 �lower right panel�. Same axis labels in all four plots. �b�
Mean-square oblique pattern ��Io�2	, and �c� spatial autocorrelation
function Sa�Io� of the oblique pattern.
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Sa�Aj� = �Fs
−1
†�Fs�Aj��2‡	 .

The moduli of all four autocorrelation functions �not shown�
have anisotropic, bell-shaped forms centered at �0,0�. The
associated horizontal and vertical correlation lengths are 50,
56, 70, and 49 and 112, 125, 146, and 105 pixels for
j=1,2 ,3, and 4, respectively. Thus there is a significantly
higher correlation in the vertical than in the horizontal direc-
tion, suggesting that the extensiveness of the chaos is domi-
nant in the horizontal, transverse to the director, direction.

In terms of the Sa�Aj�, the spatial autocorrelation function
Sa�Io� of the oblique pattern can be represented as

Sa�Io��k,l� = Sa�A1��k,l�e2�i�mck/M+ncl/N�

+ Sa�A2��k,l�e2�i�−mck/M+ncl/N�

+ Sa�A3��k,l�e2�i�−mck/M−ncl/N�

+ Sa�A4��k,l�e2�i�mck/M−ncl/N�.

This function is displayed in Fig. 6�c�; its pattern is a super-
position of zig and zag stripes, with the zag stripes dominat-
ing. The different correlations in the vertical and horizontal
directions can be clearly seen in this figure.

B. Karhunen-Loève decomposition

The mean intensities and autocorrelation functions allow
identification of spatial regions with high and low activities
and their correlations on average. However they do not pro-
vide information about the spatiotemporal complexity of the
pattern, in particular the dimensionality, that is, the number
of active degrees of freedom contributing to the dynamics. A
method for objectively diagnosing the complexity of a spa-
tiotemporal pattern is the Karhunen-Loève decomposition
�KLD�. This decomposition is a long-used technique in the
signal analysis and processing. Unlike other techniques of
decomposition that deal with fixed basis functions, the goal
of a KLD is to find a minimal set of spatial modes that best
fit the statistical features �variances� of the ordered state pat-
tern, as well as uncover essential information about the dy-
namics of the system.

From a data-reduction point of view, the KLD is a statis-
tical method for compressing spatiotemporal data by project-
ing them onto uncorrelated subspaces of decreasing variance.
The basis functions spanning these subspaces are referred to
as KLD eigenmodes. Here we apply the method to the time
series of the spatial Fourier modes of all four envelopes si-
multaneously. In Sec. V E the KLD is applied to each enve-
lope in physical space individually.

Writing the mean-subtracted time series of the nonzero
spatial Fourier modes of Aj as rows in a matrix, and concat-
enating the resulting four matrices, yields a complex
4MwNw�T data matrix X=X�q , t�, whose row index t labels
time, and whose column index q encodes Fourier mode num-
bers �m ,n� and envelope labels j. The KLD method consists
of calculating the orthonormal eigenvectors �i=�i�q� along
with their eigenvalues 
i of the autocorrelation matrix XX�

�the asterisk denotes the adjoint matrix�, which satisfy

�XX���i = 
i�i.

The eigenvalues are real and non-negative and are sorted by
magnitude, 
1�
2� ¯ �
4MwNw

�0. In terms of the �i and
the orthonormal temporal eigenvectors �i=�i�t�, which sat-
isfy �X�X��i=
i�i, the data matrix can be represented as

X�q,t� = �
i=1

4MwNw

�
i�i�q��i
��t� .

Statistically, the eigenvalue 
i represents the �temporal�
variance of the data in the direction �i, and the data projected
onto different eigenvectors are uncorrelated. The fraction of
the total variance contained in the projection onto �i is mea-

sured by the normalized eigenvalue 
̃i=
i /� j
 j. Given a pre-
scribed fraction r
1, an optimal reconstruction of the data,
in the sense that they are projected onto a space of minimal
dimension and that the projected data capture at least the
fraction r of the total variance, is given by

Xrec�q,t� = �
i=1

D

�
i�i�q��i
��t� ,

where

D = min�d � �
i=1

d


̃i � r� 
 DKLD�r� .

In practice one fixes a “reasonable” value of r, typically
r=0.9, and considers DKLD�r� as intrinsic dimension of the
data. In �41–43�, DKLD�r� has been defined as KLD dimen-
sion of the system.

In Fig. 7�a� the first 70 normalized KLD eigenvalues 
̃i
are displayed as functions of the KLD mode number i, to-

gether with the fraction of the variance, � j=1
i 
̃ j, captured by

all KLD modes with mode numbers 
i. In order to repro-
duce 90% of the variance, 45 KLD modes are needed
�DKLD�0.9�=45�. Thus we are dealing with a high-
dimensional, complex pattern that cannot be described by a
chaotic dynamical system with few degrees of freedom. The
first three modes contain 18%, 10%, and 7% of the total
variance, and the mode with mode number 40 contains
0.34%. Although this is small, this mode cannot be neglected
if a reconstruction with 90% variance is required.

Each KLD mode �i�q� is composed of four envelope
components A1 , . . . ,A4 in Fourier space. The L2 norms of
these components �with ��i�=1� are plotted in Fig. 7�b� as
functions of i. The moduli of the first mode are visualized in
Fig. 8�a�, with the Fourier modes of A1 , . . . ,A4 displayed in
separate cells.

As apparent from Fig. 7�b�, the first two KLD modes are
dominated by A3, with only small contributions from
A1 ,A2 ,A4. The third mode is dominated by A2, but there is
also a significant contribution from A3. For i
44, 32, 11,
and 1 modes are dominated by A3, A2, and A4, respectively.
The contributions from A1 and A4 are small for i
10 and get
larger when i increases, until eventually the L2 norms of all
four envelopes fluctuate about 0.5. Moreover, plots analo-
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gous to Fig. 8�a� show that the distributions in Fourier space
become broader and more irregular when i increases.

By Fourier inversion, the envelope components of the
KLD modes in Fourier space can be transformed to
“eigenenvelopes” in physical space. The moduli of the
eigenenvelopes computed from the first KLD mode �1�q� are
shown in Fig. 8�b�. They are dominated by A3, and �A3� is
highest in the left part of the cell. The eigenenvelopes for the
second mode �not shown� are also dominated by A3, and here
we see high-intensity regions in the right part of the cell. For
both modes the high-intensity regions are extended in the
vertical direction, consistent with the mean intensity plot of
Fig. 6�a�. Apparently the KLD has identified the two parts of
the cells as uncorrelated components for A3. The third
eigenenvelope �not shown� is dominated by A2, and exhibits
a single vertical compartment with high values of �A2�. For
i=4 �not shown; A3 dominant�, we find a single high-
intensity spot for A3 in the left part of the cell. For i=5 �also
not shown�, A2 and A3 have comparable contributions, and
here we find several vertical high-intensity regions for A3 in
both left and right parts of the cell, whereas A2 shows only

two such regions in the left part of the cell. Generally, the
high-intensity regions of the eigenenvelopes are significantly
more extended in the vertical than in the horizontal direction.

In Fig. 9�a� the moduli of the temporal eigenfunctions
�i�t� are shown for i=1,2 ,3 ,40. A characteristic feature of
these eigenfunctions is that the number of approximative ze-
ros of ��i�t�� increases with increasing i. Phase plots of two
or three temporal eigenfunctions, e.g., ��1� versus ��2�, do
not reveal any discernible structure.

Owing to representation �14�, the spatial KLD eigenpat-
terns Io,i of the oblique pattern Io can be represented as

Io,i�k,l� = A1,i�k,l�e2�i�mck/M+ncl/N� + A2,i�k,l�e2�i�−mck/M+ncl/N�

+ A3,i�k,l�e2�i�−mck/M−ncl/N�

+ A4,i�k,l�e2�i�mck/M−ncl/N�,

where the Aj,i�k , l� are the eigenenvelopes computed from
�i�q�. The eigenpatterns for i=1,2 ,3 ,40 are shown in Fig.
9�b�. For i=1,2 and i=3 we see vertical high-intensity re-
gions with zag waves and zig waves due to the dominance of
A3 and A2, respectively. When i increases, the eigenpatterns
develop more and more patches of high intensity with super-
positions of zig and zag waves; see Fig. 9�b� for i=40.
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FIG. 7. �a� First 70 normalized KLD eigenvalues �upper panel�
and fraction of variance captured by KLD modes up to mode num-
ber i �lower panel� versus i resulting from a KLD applied to the
4�17�34 slow Fourier modes of A1 , . . . ,A4 simultaneously.
Needed are 45 modes to capture 90% variance. �b� L2 norms of the
envelope components A1 , . . . ,A4 of the �normalized� KLD modes
�i�q� versus mode number i. Solid, dashed, dashed-dotted, and dot-
ted lines are for �A3�, �A2�, �A1�, and �A4�, respectively.
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FIG. 8. �Color online� �a� Moduli of the first KLD mode �1�q�
displayed in four cells of size 17�34, with the Fourier modes of
A1, A2, A3, and A4 placed in �m�0,n�0�, �m�0,n�0�,
�m�0,n�0�, and �m�0,n�0�, respectively. �b� Moduli of the
eigenenvelopes of A1 �upper left panel�, A2 �upper right panel�, A3

�lower left panel�, and A4 �lower right panel� in physical space for
the first KLD mode. Same axis labels in all four plots.
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C. Holes

The 1D complex Ginzburg-Landau equation admits spe-
cial so-called hole-solutions �44�, which are localized solu-
tions with a very small value of the modulus at a distin-
guished spatial location. In simulations of the Ginzburg-
Landau equation, one can observe several such holes moving
through space, merging and disappearing, or being created
�45,46�. We have made similar observations in simulations of
the four coupled Ginzburg-Landau equations describing the
oblique oscillatory instability in 2D anisotropic systems
�19,20,22�, and the envelopes extracted from our experimen-
tal pattern also appear to exhibit a number of holes, as can be
seen in the snapshot in Fig. 5�a�.

Since the appearance of holes is a characteristic feature of
the envelope dynamics, we study and visualize their location
and distribution. To compute them at a given instant of time,
we consider the pixel values of an envelope as values of a
continuous function on a rectangular M �N grid, and use a
bilinear interpolation to represent this function in each basic
rectangle. The hole positions are then identified with the grid
points �k , l� that are nearest to the simultaneous zeros of the
real and imaginary parts of the interpolated function.

For each envelope Aj, the statistics of the holes is de-
scribed by the holes’ frequency distribution Fh,j�k , l�, which
we define as the number of times a hole occurs at the posi-

tion �k , l�. Three-dimensional plots of these distributions are
shown in Fig. 10�a�. As can be seen in this figure, A1 and A4
have significantly more holes than A2 and A3, and their
holes’ frequency distributions are more irregular. Moreover,
all four distributions appear to be organized in approximately
vertical regions of alternating high and low numbers of
holes. Reduced 2D plots of these distributions are shown in
Fig. 10�b�, with locations where no hole, one hole, and two
or more holes occur plotted black, gray �brown online�, and
white, respectively. We can see relatively large and contigu-
ous black regions in the plots for Fh,2 and Fh,3, whereas most
of the area in the plots for Fh,1 and Fh,4 is white. The gray
�online red� line segments within the dark regions in the
plots for Fh,2 and Fh,3 mark single hole trajectories. The ver-
tical averages of these distributions are shown in Fig. 12�c�.

Time plots of the holes are displayed in Fig. 11. In Fig.
11�a� the instantaneous number of holes of Aj in the cell,
Nh,j�t�, is plotted as function of t over the full time range.
Notice the few isolated high peaks in these time series,
which occur simultaneously for two or three envelopes.
Summing up the time series yields 1.6�106, 0.9�106,
0.4�106, and 1.6�106 as total numbers of holes exhibited
by Aj for j=1, 2, 3, and 4.
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FIG. 9. �Color online� �a� Moduli of the temporal KLD
eigenfunctions �i�t�, and �b� moduli of the oblique eigenpatterns
associated with the eigenenvelopes, for KLD mode numbers
i=1,2 ,3 ,40 �upper left, upper right, lower left, and lower right
panels�. Same axis labels for all four plots in �b�.
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FIG. 10. �Color online� �a� Holes’ frequency distributions Fh,j of
the envelopes Aj, with 1
 j
4. The maxima are 62, 77, 138, and
60 for j=1,2 ,3, and 4. Same tick labels for all four plots. �b�
Reduced plots of Fh,j �upper left, upper right, lower left, and lower
right panels for j=1,2 ,3, and 4�, with locations where no holes,
one hole, and two or more holes occur plotted black, gray �brown
online�, and white, respectively. The fractions of the black and gray
�brown online� areas in percent are 7.9, 34.5, 61.8, and 7.7 and
12.1, 19.9, 15.3, and 11.4 for j=1,2 ,3, and 4. Same axis labels for
all four plots.
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In the top and bottom panels of Figs. 11�b� and 11�c�, the
horizontal �l� and vertical �k� positions of the holes of
A3 and A4 are plotted as functions of t in the range
20 000
 t
21 000. For A3 we can see narrow horizontal
intervals populated by many holes. Between these intervals
only few mostly contiguous hole trajectories are present. In
the vertical direction, A3 shows more holes in the upper half
of the cell than in the lower half, which is also apparent in
the Fh,3 plot of Fig. 10�b�. For A4, the vertical direction is
densely and almost uniformly populated by holes, whereas in
the horizontal direction there are regions that are not covered
by hole trajectories over certain time ranges. The hole trajec-
tories of A2 �not shown� are similar to those of A3 in the
horizontal direction, but more uniform and dense in the ver-
tical direction. For A1 �also not shown� the trajectories are

similar to those of A4. The percentages of the numbers of
grid points populated by holes of Aj at least once are 92.14,
65.54, 38.23, and 92.31 for j=1, 2, 3, and 4.

D. Temporal correlation analysis and coherent
vertical structures

One of the most striking features of our pattern is the
appearance of high-intensity patches of the envelopes, which
are confined to approximately vertical rigid regions. We
identify the envelope patterns within these regions with co-
herent vertical structures, and the regions themselves with
regions of coherence. In order to determine their boundaries,
we study the temporal correlations of the envelopes in the
horizontal direction.

To reduce the computational effort of this correlation
analysis, the spatial domain is partitioned into 32�128 cells
of size 15�5 pixels, and the Aj are represented by the spa-
tial averages over these cells, which is justified by their slow
spatial variation. We denote these local averages by aj�k , l , t�,
where here 1
k
32 and 1
 l
128 are the vertical and
horizontal cell labels.

Since our goal is to quantify temporal correlations in the
horizontal direction, we make a further reduction by repre-
senting Aj in each vertical bin with label l by a single time
series � j�l , t�. This time series is determined through a KLD
of aj in each bin, resulting in 32 temporal KLD modes
� ji�l , t�, with 1
 i
32. To capture 90% of the variance,
8–11, 6–10, 6–8, and 8–11 modes are needed at the different
sites for j=1, 2, 3, and 4, and the first mode contains 20–
40% and 30–50% of the variance of a1, a2, a4, and a3, re-
spectively. The first mode, � j�l , t�
� j1�l , t�, is used in the
temporal correlation analysis.

Given any two time series u�t� and v�t�, the normalized
cross-correlation function Cuv�t� is given by

Cuv�t� =
Ft

−1
†Re�Ft�u�Ft�v��‡�t�

�u��v�
,

where �u� and �v� are the L2 norms of u and v. A measure of
the correlation between u�t� and v�t� is provided by the
cross-correlation coefficient, defined as

C�u,v� = maxt�Cuv�t�� .

Note that 0
C�u ,v�
1 and C�u ,v�=1 if and only if v is
related to u by a time shift and a scalar multiplication.

To quantify the temporal correlations in the horizontal
direction, we compute for each envelope Aj the matrix CH,j
of horizontal cross-correlation coefficients associated with
the dominant vertical KLD modes,

CH,j�l,l�� = C�� j�l, .�,� j�l�, .�� ,

which is a positive and symmetric 128�128 matrix with
maximal value of 1 in the diagonal. This matrix is displayed
in Fig. 12�a� for each j. As expected, there is little correlation
between vertical bins at sites l and l� that are sufficiently
apart from each other. The thickened light regions around the
diagonal correspond to bins l with high correlations to neigh-
boring bins.
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FIG. 11. �a� Number Nh,j of holes of Aj in the cell versus time.
��b� and �c�� Horizontal �upper panel� and vertical �lower panel�
positions of holes versus time for �b� A3 and �c� A4. Time range:
20 000
 t
21 000.
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Bins with small nearest-neighbor correlations are identi-
fied with separation boundaries between adjacent vertical co-
herence regions. To determine these boundaries, we calculate
for each l the average correlation of � j�l , t� and � j�l� , t� for
�l− l��
2, yielding the 1D array CN,j�l� of �average� nearest-
neighbor correlation coefficients shown in Fig. 12�b�. In this
figure we can clearly recognize six distinguished minima of
CN,j�l� for j=1,2 ,3, which we select as separation bound-
aries. The graph of CN,4�l� is more complicated. Here we
select six minima as separation boundaries by the condition
that they are the steepest and sufficiently distant from each
other. The selected minima are displayed by dots in Fig.
12�b� and on the diagonal in Fig. 12�a�. Their bin labels are
summarized in Table I�a�.

Figure 13�a� shows the vertical averages ��aj�2	v of the
intensities �aj�2 as functions of time and bin number, together

with the separation boundaries which are displayed by verti-
cal white lines. To reduce the amount of data to be displayed,
local temporal averages over 50 time steps are plotted. In
Fig. 13�b� the mean intensities averaged over the vertical
direction, ���Aj�2		v, are shown, also together with the sepa-
ration boundaries displayed by dashed lines. In both figures
the coherence regions, computed through minimal temporal
correlations, match well the active and inactive regions re-
vealed in the intensity plots. As a further characteristic, we
show in Fig. 13�c� the vertical averages of the holes’ fre-
quency distributions, �Fh,j	v. Here the boundaries between
adjacent regions are located near peaks of these distributions.

To resolve the coherent structures in the vertical direction,
we have performed a KLD of the aj in each of the coherence
regions 1–7. The numbers of KLD modes required to capture
90% of the variance in these regions are summarized in
Table I�b�. Notice that significantly fewer modes are needed
for a2 and a3 than for a1 and a4. The primary coherent struc-
tures of the Aj can be identified with the first KLD modes in
each of the coherence regions. Plots of their moduli �not
shown� for the dominant envelopes A3 and A2 show that most
of these modes are elongated in the vertical direction.

E. Diagnosis of spatiotemporal chaos

The most basic tool for analyzing a chaotic dynamical
system is to compute its Lyapunov exponents, which mea-
sure the divergence of nearby trajectories. The knowledge of
the spectrum of Lyapunov exponents enables one to estimate
the number of active degrees of freedom in terms of the
Lyapunov �or Kaplan-Yorke� dimension �47�, as well as to
approximate the Kolmogorov-Sinai entropy that quantifies
the growth of uncertainty if the system is subject to pertur-
bations �48�. For low-dimensional systems it is straightfor-
ward to compute the Lyapunov spectrum not only from
model equations using the Jacobian, but also from measured

TABLE I. �a� Bin labels of the points displayed by dots in Figs.
12�a� and 12�b�. These labels correspond to the boundaries separat-
ing the vertical coherence regions identified for each envelope. �b�
Numbers of KLD modes required to capture 90% variance in KLDs
of aj restricted to the coherence regions 1–7 �left to right�.

�a�
j Bin labels

1 18 32 54 86 96 115

2 8 20 32 49 87 112

3 5 29 49 62 83 114

4 6 36 64 86 101 114

�b�
j DKLD�0.9� in regions 1–7

1 11 5 7 21 17 10 12

2 4 4 4 5 7 6 8

3 6 4 4 4 3 4 3

4 9 10 8 12 23 9 5
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FIG. 12. �Color online� �a� Horizontal cross-correlation coeffi-
cients CH,j�l , l�� �upper left, upper right, lower left, and lower right
panels for j=1,2 ,3, and 4� of the 128 dominant KLD time series
� j�l , t� at horizontal position �vertical bin number� l, with 1
 l

128. In these calculations the envelopes Aj have been averaged
over 5 and 15 pixels in the horizontal and vertical directions, re-
spectively; see text for details. Same grayscale �color online� map,
axis labels, and axis scales for all four plots; maximal value of 1 on
the diagonal. �b� Nearest-neighbor correlation coefficients CN,j�l�
obtained via averaging CH,j�l , l�� over the five nearest neighbors l�
of l. The dots in �a� and �b� mark boundaries between seven adja-
cent coherence regions for each envelope Aj, identified with the six
steepest and sufficiently distant minima of CN,j. Same horizontal
axis labels and tick labels for all four plots.
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data using nonlinear time-series analysis methods based on
embedding techniques.

For high-dimensional systems however, with many active
degrees of freedom, the computation of Lyapunov spectra is
problematic, even if governing equations are known �49,50�.
Specifically in spatially extended systems there is the possi-
bility of extensive spatiotemporal chaos, which means that
the Lyapunov dimension, or other fractal dimensions, and
more generally the spectrum of positive Lyapunov exponents
scale linearly with the volume of the system and so become
extensive quantities �51,52�. Such systems have to be char-
acterized by an intensive quantity related to the intrinsic di-
mension of the system. A natural dynamical invariant of this
kind is the Lyapunov dimension density, defined by �L
=limV→� DL /V, where V is the system’s volume and DL is its
Lyapunov dimension �51�. An equivalent measure is the as-
sociated correlation length �L=�L

−1/d, where d is the number
of asymptotically large spatial dimensions �d=2 for our elec-
troconvection pattern�. To compute �L or �L in practice re-
quires computation of Lyapunov spectra for systems of in-
creasing size �51,52�. This is, however, impractical for the
analysis of experimental data, since the number of data
needed in embedding calculations for estimating Lyapunov
spectra grows exponentially with the system size if the sys-

tem is extensively chaotic. Therefore another approach is
needed to test data for extensive chaos.

An approach that is based on the Karhunen-Loève decom-
position and is straightforwardly applicable to experimental
data was introduced by Zoldi and Greenside �53�; for its
application to spiral defect chaos see �4�. The basic idea is
that for extensive chaos the KLD dimension DKLD�r� intro-
duced in Sec. V B also behaves like an extensive quantity.
That is, the rate of increase in DKLD�r� with the volume V is
similar to the rate of increase in DL, since the extensivity of
the dimension arises from the appearance of new orthogonal
directions contributing to the dynamics when V increases.
Thus the KLD correlation length, defined by

�KLD�r� = �DKLD�r�/V�−1/d,

should converge to a positive number when V→� if the
system is extensively chaotic. Although DKLD�r� is not a dy-
namical invariant like DL, and is somewhat ambiguous be-
cause of its r dependence, a nonzero limit is an indicator of
extensive chaos. It has been demonstrated �53� that the onset
of extensivity of DKLD�r� accurately predicts the onset of
extensivity of DL for increasing V.

We have applied the KLD first to the full system, that is,
to all 32�128 time series aj�k , l , t� computed via local aver-
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FIG. 13. �Color online� �a� Intensities ��aj�2	v �upper left, upper right, lower left, and lower right panels for j=1,2 ,3 ,4� of the envelopes
Aj averaged over vertical bins of widths of 5 pixels and 50 time steps. Horizontal and vertical axes represent bin numbers �1–128� and times
�0
 t /50�600�, respectively. Same axis labels and axis scales for all four plots. �b� Moduli of the spatial averages of the mean intensities
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ages of each of the envelopes Aj. In Fig. 14�a� we show the
fraction of the variance captured by the KLD modes with
mode numbers 
i versus i. Notice that the variance curves
for A1 and A4 are very close. The values of DKLD�0.9� are 30,
16, 13, and 29, yielding �KLD�0.9�=101, 139, 154, and 103
pixels for j=1, 2, 3, and 4.

In Fig. 14�b�, �KLD�r� is displayed for a range of r values.
The steps in this plot are due to small DKLD values for
smaller values of r �DKLD�0.7�=6 for A3�.

The first six eigenenvelopes for A3 are shown in Fig.
14�c�. We note that the first two of them are very similar to
the first two A3 modes calculated from the global KLD �Figs.
8 and 9�. The third modes are different, because in the global
KLD this mode is dominated by A2.

To diagnose extensive chaos, we have performed a KLD
for A3 in subsystems of increasing size. A subsystem with an
area of 75�32�L pixels2 is identified with the time series
a3�k , l , t� for 1
k
32 and l0+1
 l
 l0+L. For L�128 we
have varied l0 over the accessible range and calculated the
averages of DKLD�r� and �KLD�r�. Four values of r have been
chosen: r=0.78, 0.88, 0.94, and 0.98. The KLD dimensions
DKLD�r� and the associated correlation lengths �KLD�r� for
these r values are displayed in the top and bottom panels of

Fig. 14�d� as functions of the area. For the three larger values
of r we can clearly see that DKLD�r� scales linearly with the
area, and �KLD�r� approaches a constant value, which sug-
gests that we have extensive chaos.

The limiting values of �KLD�r� are 196, 160, 131, and 98
pixels for r=0.78, 0.88, 0.94, and 0.98. Recall that the hori-
zontal and vertical correlation lengths for A3 �Sec. V A� are
70 and 146 pixels, respectively. Their geometric mean is 101,
which is close to the limiting value of 98 of �KLD�r� for r
=0.98. Furthermore, the ratio 640 /98�6.53 matches number
7 of coherence regions identified in Sec. V D. Thus the nu-
merical values resulting from the three different diagnostic
methods are consistent.

Next we consider the first �largest� Lyapunov exponent, 
,
which is not an extensive quantity �54�. We did a number of
embedding calculations, trying to estimate 
 for different
embedding dimensions de and several time series, including
various slow Fourier modes, vertical averages of the enve-
lopes, and the first vertical KLD modes � j�l , t� exploited in
Sec. V D. For all time series considered, 
 increased with de
for 1
de
3, and for de�3 we observed mild fluctuations
for 4
de
6, and a relatively strong increase with de for
de�6. False-nearest-neighbor tests showed an increase in
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FIG. 14. �Color online� �a� Fraction of variance captured by KLD modes up to mode number i versus i, resulting from a KLD of each
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size versus subsystem size �area measured in pixels2�. Lower panel: �KLD�r� associated with DKLD�r�. See text for details.
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the number of false nearest neighbors with increasing de in
the range de�6, but did not indicate the presence of false
nearest neighbors for de
6. Optimal delays turned out to be
about 100–150; these large values are due to the slow varia-
tion in the time series. The estimated values of 
 for
4
de
6 varied between 0.05 and 0.13.

The outcome of these calculations for de=4 and delay of
100 is displayed in Fig. 15 for the real parts of the first
vertical KLD modes � j�l , t� for 1
 l
128 and all four en-
velopes. The fluctuations of 
 with l are relatively strong; the
mean values are

0.0933 � 0.0100, 0.0933 � 0.0094,

0.0907 � 0.0100, and 0.0957 � 0.0108

for j=1, 2, 3, and 4. The mean value over all four envelopes
is 0.0933�0.0102. Because of the problems encountered in
embedding calculations for high-dimensional chaotic sys-
tems, this mean value cannot be considered as approximation
of the true Lyapunov exponent, but rather as lower bound. In
model calculations it has been observed that the largest
Lyapunov exponent increases with increasing system size to-
ward a finite value, and that the Lyapunov exponents of two
consecutive sizes are interleaved; see, e.g., �52,55�. Qualita-
tively our estimates of the first Lyapunov exponent confirm
the chaoticity of the pattern, and together with the KLD cal-
culations for increasing subsystem size, they strongly sug-
gest that we have extensive spatiotemporal chaos.

A further approach to diagnosing spatiotemporal chaos
was suggested by Jung et al. �56�, which is based on a de-
composition of the spatiotemporal pattern into coherent
space-time clusters. In this approach the space-time cube is
first thresholded to distinguish between active and inactive
sites, and then the active sites are decomposed into contigu-
ous regions referred to as coherent clusters. The size s of
each of the coherent clusters is the number of active sites
constituting the cluster, and is characterized by a cluster-size
distribution p�s�. We have done this analysis for the intensity
�a3�k , l , t��2 using a threshold value of 0.7 �the maximum of

�a3�2 is 1.96�. The resulting cluster-size distribution is shown
in Fig. 16 on a logarithmic scale, suggesting a power-law
distribution p�s�=bs� with an exponent ��−0.95, which is
indicative of disordered spatiotemporal behavior �56�. The
exponent depends on the threshold. For the threshold values
of 0.6 and 0.8 the exponents turned out to be −0.85 and
−1.02, respectively.

F. Pattern analysis

According to �23,24�, the normal form for the oblique
Hopf instability has six ideal wave patterns as basic solu-
tions: oblique plane traveling zig and zag waves �stripes�,
rectangles traveling in the horizontal and vertical directions,
oblique plane standing waves, standing rectangles, and
alternating waves characterized by periodic reversals
between zig and zag standing waves. In the pattern
reported here, local patches of approximate right-traveling
zag waves �A3�0,A1 ,A2 ,A4�0�, right-traveling zig
waves �A2�0,A1 ,A3 ,A4�0�, right-traveling rectangles
�A2�A3 ,A1 ,A4�0�, and small patches of standing rect-
angles or alternating waves ��A1���A2���A3���A4�� can be
observed. To locate these patterns in space and time, we
decompose the spatial domain into 32�16 cells and use lo-
cal averages of the Aj in each cell and over 25 time steps.
The presence of a particular wave type in a given cell and a
given instant of time is determined by a threshold condition;
e.g., for a zag wave we require �Aj � / �A3��0.1 for j=1,2 ,4.

The result of this calculation is visualized in Fig. 17. The
horizontal axis in this figure comprises all 512 cell labels,
with the labels in each of the 32 vertical bins concatenated
and separated by vertical lines. The labels attached to the
axis refer to the bin numbers. The cell labels from bottom to
top in each bin are displayed left to right. If a cell at a given
time satisfies the threshold criterion for a particular wave
type, this is displayed green, blue, yellow, and red for zag
waves, zig waves, TRs, and SRs or AWs, respectively.

A vertically integrated version of this figure is shown in
Fig. 18. Here the size of the vertical region �number of cells�
in each bin that is covered by a particular wave type is plot-
ted versus bin number and time.

As expected we see mainly zag waves in these figures.
Moreover, these waves are found in all regions with high
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intensity of A3 except in region 3 �cf. Fig. 13�a��. In contrast,
only few zig waves occur and these are more randomly dis-
tributed. In addition we find in the left part of the domain
relatively large, vertically organized regions with traveling
rectangles. Thus high-intensity regions of A2 lead to TR
waves rather than zig waves. There are many small and short
patches covered by SR or AW patterns; these occur mainly
when A2 and A3 have low intensities. We conclude that the
dominant patterns are zag waves and right-traveling rect-
angles. The wave patches cover about 2% of all space-time
cells.

VI. CONCLUSIONS

We have reported and analyzed a complex spatiotemporal
pattern that occurred in electroconvection in the nematic liq-
uid crystal I52. The pattern was observed slightly above the
onset of convection, which is a supercritical Hopf bifurcation
leading to two �zig and zag� pairs of counterpropagating

traveling rolls propagating in oblique directions relative to
the director. Mathematically this kind of �oblique Hopf� in-
stability is described by a system of four coupled Ginzburg-
Landau equations �20–22�, governing the evolution of slowly
varying envelopes of four traveling plane-wave trains. In the
present work, instead of simulating the Ginzburg-Landau
system, we have extracted the envelopes from the experi-
mental data using a demodulation analysis. In order to char-
acterize the dynamics of the pattern, we have applied a va-
riety of diagnostic tools to the envelopes, including the
calculation of average intensities and spatial correlation
lengths, global and local Karhunen-Loève decompositions in
Fourier space and physical space, the location of holes in
time and space, the identification of coherent vertical struc-
tures, and estimates of Lyapunov exponents. These methods
are general and can be applied as well to other experimen-
tally recorded or numerically computed complex space-time
data.

One of the main characteristics of our pattern is the ap-
pearance of active and inactive regions extended in the ver-
tical �parallel to the director� direction, resulting in signifi-
cantly shorter correlation lengths in the horizontal than in the
vertical direction. We have located the vertical coherence
regions and coherent structures using a temporal correlation
analysis, in which the boundaries between adjacent regions
were identified through minimal nearest-neighbor correla-
tions. The picture emerging from this analysis is that of a
coupled spatial system, with strong coupling within the co-
herence regions and weak coupling between different re-
gions. The effective number of degrees of freedom in each
region was studied via Karhunen-Loève decompositions,
showing that significantly fewer KLD modes contribute to
the high-intensity envelopes A2 and A3 than to the low-
intensity envelopes A1 and A4. It is tempting to assume that
A1 and A4 are slaved by A2 and A3, but this can only be
verified by investigating the Ginzburg-Landau system for the
oblique Hopf instability in a parameter range showing the
type of pattern recorded in this experiment.
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FIG. 17. �Color� Location of zag waves, zig
waves, traveling rectangles �TRs�, and standing
rectangles �SRs� or alternating waves �AWs� in
time and space, averaged over 25 time steps and
cells of size 20�30 pixels. On the horizontal
axis the 16 cell labels in each of the 32 vertical
bins are concatenated, with bottom to top dis-
played left to right. The presence of a zag wave,
zig wave, TR, and SR or AW is marked green,
blue, yellow, and red, respectively.

FIG. 18. Number of cells, N, in each vertical bin showing �a� a
zag wave, �b� a zig wave, �c� a TR, and �d� a SR or an AW as
function of time �t /25� and bin number �l�. Same axis labels for all
four plots.
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To diagnose the chaotic nature of the pattern, we have
computed the KLD dimension DKLD�r� in spatial subsystems
of increasing size. For sufficiently large r we found a perfect
linear scaling of DKLD�r� with the subsystem size, indicating
that the KLD dimension is an extensive quantity. Although
there is no rigorous mathematical theory relating the KLD
dimension to the Lyapunov or correlation dimension of a
chaotic attractor, this scaling suggests that our pattern exhib-
its extensive spatiotemporal chaos. The chaoticity of the dy-
namics has also been confirmed by estimating the largest
Lyapunov exponent from embedding calculations for a vari-
ety of time series, which resulted in positive exponents for
all time series examined. We note that the embedding meth-
ods used to estimate the largest Lyapunov exponent only
succeeded on the demodulated �slowly varying� data. Em-
bedding calculations for the original, nondemodulated time
series failed completely because of the fast oscillations
present in them; only after demodulation was the time-series
analysis feasible. This observation deserves further investi-
gation.

Our pattern differs from the spatiotemporally chaotic pat-
tern reported by Dennin et al. �9,11,15�, which also was
found in electroconvection in the nematic I52 slightly above
the oblique Hopf instability, but for another set of material
parameters and for a thicker cell �28 �m�. The pattern of
Dennin et al. �9,11,15�, referred to as extended chaos type 1,
is extended throughout the cell, whereas our pattern shows
the active and inactive regions mentioned before. Moreover,
in the pattern reported in �9,11,15�, local patches of persist-
ing alternating waves have been observed, which are charac-
terized by an alternation between standing waves in the two
oblique directions. The alternating waves require all four en-
velopes to have roughly equal amplitudes, which is not the
case for our pattern. Instead, the analysis of ideal wave pat-
ters performed in Sec. V F shows that zag-right waves and
right-traveling rectangles are the favored patterns, and these
patterns occur dominantly in the high-activity regions. In the
low-activity regions the dynamics appears highly chaotic.

Whether the presence of the active and inactive regions is
a form of spatiotemporal intermittency �57,58� is open at this
point. Spatiotemporal intermittency is characterized by the
coexistence of regions with regular or laminar behavior and
regions with turbulent behavior. For our pattern, the active
regions have smaller KLD dimensions and show a higher
percentage of wave patches than the inactive regions. Thus it
is tempting to identify the active regions with laminar re-
gions, although the dynamics is still chaotic. To decide about
spatiotemporal intermittency requires careful parameter stud-
ies regarding the widths of these regions. Preliminary experi-
ments performed with the sample cell showed that the widths
are very sensitive to variations in the conductivity. When ��

is increased, the widths of the inactive regions slightly above
the onset become smaller and eventually these regions dis-
appear. For ��=4.1�10−8 	−1 m−1 a spatially uniform
state is observed, similar to the state reported by Dennin
et al. �9,11,15�. The inactive regions also get smaller when
the voltage is increased beyond the onset value.

A mechanism or building block for the observed state has
not yet been identified. Egolf et al. �59� claimed that spa-
tially localized dislocation nucleation events are a main

mechanism underlying spiral defect chaos. Their claim is
supported by theoretical studies of Rayleigh-Bénard convec-
tion in which these events are revealed in a temporally local
first Lyapunov vector. In a later paper Jayaraman et al. �60�
suggested that this claim does not generalize to domain
chaos in that there is not a simple relation between defect
dynamics and the largest Lyapunov exponent. Generally the
existence of building blocks for spatiotemporal chaos re-
mains to be difficult to establish, and is discussed somewhat
controversial in the literature. Due to the lack of governing
equations, computation such as those of Egolf et al. �59� and
Tao et al. �60� could not be done for our experimental pat-
tern. Calculations for the coupled Ginzburg-Landau equa-
tions describing the oblique Hopf instability should make it
possible to perform a similar analysis, as well as to address
questions such as for the scaling of the widths of the active
and inactive regions when parameters are varied. The param-
eter regime for these equations that leads to the type of pat-
tern reported here still has to be determined.

Nevertheless, there are some interesting similarities be-
tween the dynamics of the experimental pattern and of pre-
vious numerical studies of the Ginzburg-Landau equations
utilized in our analysis of the weak electrolyte model. In the
analysis of the experimental pattern we observe patches of
A2 ,A3 reminiscent of regular solutions, destroyed by highly
chaotic �even noisy� patches of A1 ,A4. A similar interplay
between regular and chaotic patches was observed in the
numerical zigzag spatiotemporal chaos described in �20�.
Furthermore, the dynamics of the holes characteristic of the
experimental pattern resembles the behavior of the holes ob-
served in the extensive spatiotemporally chaotic pattern com-
puted numerically in a weakly nonlinear analysis of the weak
electrolyte model �19�. Both numerically computed STC pat-
terns are bifurcating at the onset as does the experimental
pattern analyzed here. Overall, the results of our analysis are
consistent with the amplitude equations’ description of the
oblique Hopf instability, contributing in this way to a valida-
tion of the weak electrolyte model.

In this paper we have focused on a thorough analysis of a
specific, particularly interesting pattern recorded for fixed
material parameters of I52, and a fixed ac frequency and ac
voltage slightly above the onset value. The main objective
was to study the dynamics of the wave envelopes extracted
from the pattern, in particular the diagnosis of extensive spa-
tiotemporal chaos. Some of the other patterns found in the
sample cell, for different values of the conductivity ��, such
as worms, grid patterns, and alternating waves, are not de-
scribed in this paper. Work toward determining the param-
eters of the standard model for these experiments is in
progress. Together with estimates of the additional param-
eters occurring in the weak electrolyte model, this will en-
able us to compute the parameters in the Ginzburg-Landau
system for the experiment reported here and related experi-
ments, and to compare the simulated and recorded envelope
dynamics.

In summary, the analysis presented in this paper shows
that the study of slowly varying envelopes extracted from
experimentally recorded space-time data is a useful approach
to analyzing an observed spatiotemporal behavior above the
onset of patterning. Combined with the methods of time se-
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ries and pattern analysis utilized in this paper, this approach
provides efficient tools for characterizing complex as well as
ordered patterns, and to compare experiments with solutions
of Ginzburg-Landau systems describing an instability. In par-
ticular, the ideal patterns predicted by the symmetries of the
Ginzburg-Landau system, which are inherited from the insta-
bility, play the role of local building blocks from which more
complicated patterns are formed. While for isotropic systems
the description in terms of a finite set of plane-wave enve-
lopes is problematic, anisotropic systems such as electrocon-

vection in nematic liquid crystals are ideally suited for this
kind of analysis.
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